Schnelle Analyse von Hopfen-Bitterstoffen

UHPLC-Säulen für die Analytik von Bier

Im vorliegenden Artikel wird eine schnelle Methode zur Bestimmung der iso-\alpha-S\u00e4uren aus Hopfen vorgestellt. Die Methode beschreibt die Vorteile der Verwendung neuartiger Core-Shell UHPLC-S\u00e4ulen f\u00fcr die Analytik von Bier.

Einleitung

Die Iso-α-Säuren aus Hopfen sind verantwortlich für den bitteren Geschmack von Bier. Sie entstehen während des Brauens durch Isomerisierung der α -Säuren (Humulone) des Hopfens zu den entsprechenden iso-α-Säuren beim Erhitzen der Würze. Die gebildeten iso- α -Säuren liegen in der Mischung in zwei isomeren Formen vor, der jeweiligen cis- und trans-Form. Die Menge der gebildeten iso-α-Säuren hängt von einigen Faktoren ab. Zu diesen Faktoren gehören die Hopfenart, wie und wie lange der Hopfen bereits gelagert wurde, wie lange die Würze gekocht wird und welchen pH-Wert sie hat. Daher ist es wichtig den Gehalt zu überwachen, um einen einheitlichen Geschmack und eine gleichbleibende Qualität sicherzustellen. Die Bestimmung der iso-α-Säuren erfolgt in der Regel mittels HPLC. Zusätzlich zu den α -Säuren enthält Hopfen auch noch α -Säuren (Lupulone), die in ihren löslichen iso-Formen ebenfalls zum bitteren Geschmack des Bieres beitragen. Sie tun dies jedoch zu einem wesentlich geringeren Teil und sind in der vorgestellten Methode nicht berücksichtigt.

Durchführung

Alle Trennungen, bis auf die gezeigte Kundenanwendung, wurden auf einem Agilent 1100 HPLC-System, das mit einer quaternären Pumpe, einem automatischen Probengeber und einem UV Detektor mit variabler Wellenlängeneinstellung ausgerüstet war, durchgeführt.

Die verwendeten Reagenzien und Lösemittel hatten HPLC-Qualität oder Analytische Qualität. Methanol und Wasser in HPLC-Qualität wurden von Honeywell, Burdick & Jackson bezogen.

Die Bierproben wurden 30 Minuten bei Raumtemperatur gerührt, um sie zu entgasen. Die chromatographische Trennung wurde mit einer Kinetex 2,6 μ m C18 Säule in den Dimensionen 100 x 4,6 mm durchgeführt. Die Detektion der iso- α -Säuren erfolgte bei 270 nm.

Alle sechs der am häufigsten bestimmten iso- α -Säuren werden in einem weniger als siebenminütigem Lauf getrennt. Isocohumulon, Isohumulon und Isoadhumulon bilden sich durch

Oxidation aus natürlichen, in Hopfen vorkommenden α -Säuren. Bei Tetrahydroisocohumulon, Tetrahydroisohumulon und Tetrahydroisoadhumulon handelt es sich um spezielle, reduzierte Formen der entsprechenden iso- α -Säuren, die stabil gegenüber photolytischem Abbau sind (Abb. 1).

Abbildung 2 zeigt eine Gegenüberstellung der Chromatogramme der Trennung von Bierproben auf verschiedenen Säulen. Das Kunden-Chromatogramm einer Brauerei aus den USA (Abb. 2a) wurde unter Verwendung einer traditionellen, mit vollporösem 5 µm C18-modifiziertem Kieselgel gepackten Säule gemessen. Die Laufzeit betrug vierzehn Minuten. Die Peakform und –breite war in diesem Fall nicht optimal. Die Trennung auf einer Kinetex 2,6 µm C18 100 x 4,6 mm Säule dau-

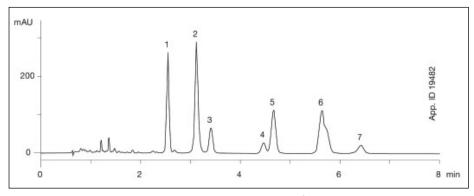


Abb. 1: Trennung der iso- α -Säuren und Tetrahydroiso- α -Säuren auf einer Kinetex 2,6 µm C18 100 x 4,6 mm Säule. Laufmittelbedingungen: isokratisch, Methanol/Wasser/Phosphorsäure (75:24:1), Flussrate 1,4 ml/min, 45 °C. UV-Detektion bei 270 nm. Signalzuordnung: 1. Isocohumulon, 2. Isohumulon, 3. Isoadhumulon, 4. trans-Tetrahydroisocohumulon, 5. cis-Tetrahydroisocohumulon, 6. Tetrahydroisohumulon, 7. Tetrahydroisoadhumulon

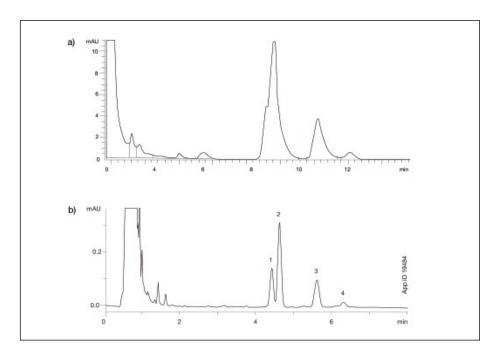


Abb. 2a: Trennung Miller Genuine Draft Beer auf einer 150 x 4,6 mm Säule gepackt mit vollporösem 5 μm C18 Material (Kundenanwendung) Abb. 2b: Trennung Miller Genuine Draft Beer auf einer Kinetex 2,6 μm C18 100 x 4,6 mm Säule

Abb. 2b: Trennung Miller Genuine Draft Beer auf einer Kinetex 2,6 µm C18 100 x 4,6 mm Säule Laufmittelbedingungen: isokratisch, Methanol/Wasser/Phosphorsäure (75:24:1), Flussrate 1,4 ml/min, 22 °C. UV-Detektion bei 270 nm. Signalzuordnung: 1. trans-Tetrahydroisocohumulon, 2. cis-Tetrahydroisocohumulon, 3. Tetrahydroisohumulon, 4. Tetrahydroisoadhumulon

erte im Vergleich nur sieben Minuten (Abb. 2b). Die hohe Trennleistung der Kinetex Säule erlaubte auch die Trennung der cis- und trans-Isomeren von Tetrahydroisocohumulon.

Zusammenfassung

Im Brauereiwesen hat man bei der Analyse der iso- α -Säuren traditionell auf HPLC-Säulen, die mit vollporösen Trennmaterialien gepackt waren, zurückgegriffen. Umstellen dieser Methoden auf den Einsatz von Kinetex 2,6 μ m Core-Shell Säulen führt zu einer deutlich besseren chromatographischen Auflösung bei gleichzeitig stark verkürzten Laufzeiten.

KONTAKT

Dr. rer. nat. Dirk Hansen Marketing Manager Europe Phenomenex Aschaffenburg Tel.: 06021/58830-0

Fax: 06021/58830-11 dirkh@phenomenex.com www.phenomenex.com